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TECHNICAL MEMORANDUM X-54949

TWO-DIMENSIONAL CONVOLUTE INTEGERS FOR
OPTICAL IMAGE DATA PROCESSING AND SURFACE FITTING

INTRODUCTION

Two-dimensional convolute integers are sets of convolution coefficients
of integer value which can be used in optical image data processing and surface
fitting problems. Applying these coefficients to a set of data is equivalent to
doing two-dimensional regression calculations: i.e¢., fitting a surface by least
squares, without considering the time-consuming summations associated with
the usual normal equations. The only requirement for use of these coefficients
is that the data points on the surface be either equidistant along their orthogonal
axis, or be spaced an integer multiple of a common factor.

A moving smoothing average is one of the fastest algorithms which can
be applied for noise filtering in an optical image, but it tends to reduce reso-
lution. The coefficients in such a filter are convolution coefficients. Two-
dimensional convolute integers utilize the fast logic of the moving smoothing
average without sacrificing resolution. From the definition of these coefficients,
ten properties appear. These properties indicate the existence and universal
aspect of the filter numhbers, As a consequence of heing derived from regres-
sion theory, the filters have low-pass and high-pass filtering properties. This
is equivalent to smoothing and generating the partial derivatives associated
with surface order. The number of unique integers per filter represents the
minimum number of multiplications per image point and significantly affects
the filtering time. A zero order or first order surface is identical to nearest
neighbor averaging. Double convolution, which represents band-pass filtering
and can generate surface normals, can be accomplished by a single set of
integers using an expanded filter mask.

The appendices contain detailed calculations for a 25-point filter,
5 by 5 mask, second order surface. The normal equations for a first and
third order are also presented.
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MOVING SMOOTHING AVERAGE

The concept of a moving smoothing average represents one of the
simplest and fastest filters that can he applied to noise reduction in a two-
dimensional image. The filter can he considered a mask, m rows by n
columns, which when applied to the data in a two-dimensional image causes a
nearest neighbor interaction.

The interaction results from adding the intensities of all the points sur-
rounding a particular location, including the value of the intensity at this
location in the sum, and then dividing by the total number of points considered,
In this way, nearest neighbors have an opportunity to influence the new average
value, which shall be considered the filter data point,

This m by n mask can be passed over all the data points in an image,
with the exception of a border of points left unfiltered. Requiring an odd
number of rows and columns unambiguously determines the center point of the
filter mask, which can then he shifted column by column, advancing one row at
a time when a border column is reached.

In particular, each data point in the mask can be thought of as multi-~
plied by a coefficient Cij [Eq. (1)], added with all other points in the mask,

the sum divided by a normalizer (Norm), and the resulting new filtered data
point put in place of the raw data point. By this method, the raw data array is
transformed into a filtered data array.

For a moving smoothing average, all the Cii terms equal unity, and

Norm is equal to the number of points in the array.

m n
! = ‘ ’ N ’ (
2" (x,y) ,424 L Cijzij(x y)/Norm 1)
i=-m j -n
where
z = array of raw data points,

z' = array of filter data points,

ij represents a pointin the (2m + 1) by (2n 4 1) filter, and re
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represents a raw data point in an image at row r and column c and is the
center point of the filter mask,

Such a filter is nonrecursive and, therefore, requires raw data points
in the Z vector at all times. Unfortunately, this type of filtering, though simple
and fast, tends to blur an image by decreasing the overall sharpness, or reso-
lution,

The problem which then arises requires the development of a set of
weighting coefficients Cij and Norm which filter with the speed of Eq. (1) and

yet do not decrease resolution,

CONVOLUTION
The coefficients Cij in Eq. (1) are convolution coefficients for the

following reason. The filter can be considered an operator which forms the
filtered data by integrating the raw data over a weighting function Qo ,f3):

2'(x,y) = [2(e,B)z(x-a, y-B)dadf . (2)

This integral is defined as the convolution of z(x-¢, y-f£) with Q(e,). Ina
digital filter, the weighting function is of the form

m n
ap) = 7 ) C.ola+i, +j)/Norm (3)
i=-m j=-n N

where 6 is the Dirac delta function representing the discrete sampling of the
data., Using this in Eq. (2) gives

m n

z'(x,y) = f Z Z C.0(a+i, B +j)/Norm | z(x-a, y-B)dadp
f=-m j=-n i .
m n
= ) Cz{x+1, y+j)/Norm . (4)
f=-m j=-n ]
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When z(x + i, y+ j) is equated with z‘j(x,y), Eq. (4) is seen to be identical

to Eq. (1), Thus, the Cij's and Norm are known as convolution coefficients,

TWO-DIMENSIONAL REGRESSION )

Two-dimensional regression calculations are equivalent to fitting a
polynomial surface to a set of data by the method of least squares [1]. A
general expression for a two-dimensional surface is

m
2= )

i ]
— A..xkyk . (5)
i=0 j

1

ll
L

Equation (5) represents the intensity z'_at the point k on the surface of

k
order m + n described by the regression coefficients Aij'

Let Zy represent the actual intensity at the kth position on an image.

Fitting the surface to the data set zk(x,y) hy the residual sum of squares

leads to Eq. (6),

6% = -y Y A xy
ij ’ (6
K\ k& j=o Mk )
Selecting the best [it regression cocfficients,
. nZ}:) m n i
96°%/0A =2 z - ) ' AL yJ uyv =0 (7)
uv ! k %0 <0 ka k | % k

leads to the normal equation

=]

n p : np
itu _jv _ | w v
) A A% YK ké Yk (<)

0 j:O k=

(g k=]
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where u= 0,m and v = 0,n. Matrix representation of Eq. (8) results in the
more familiar form of the normal equations.

Xy' . XY A=-XXT.z2 (9)

where Z is a column vector of raw data points, np by 1; A is a column vector
of coefficients representing the surface, nt by 1; XY is a matrix of cross
product terms, np by nt; and

nt = (m+n+1) * (m+n+2)/2 ,

T
number of rows and columns in the symmetric XY - XY matrix.

TWO-DIMENSIONAL CONVOLUTE INTEGERS

Definition

Rewriting i3q. (1) in matrix form allows un identification of the
regression coefficients, A, with the convolution coefficie-ts C.

z' = C . 7Z/Norm (10)
re

(Note that C is a row vector of double-subscripted elements, Z is a column
vector of double subscripted elements, and both have np elements, )

Solving the normal equations for A, which is equivalent to obtaining intensity
values on the fitted surface, yields

A:(XYT-xy)"-xyT-z X (11)

Recognizing the similarity in form between Eq. (10) and (11)
(the A's and Z's are both linear combinations of the Z's) permits a definition
of the A's in terms of the C's,

Aij= C * 7Z/Norm . (12)

o s 4
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Evaluation of the C's and Norm associated with each A i is readily
accomplished by applying Cramer's Rule for obtaining the A's in Eq. (9) and
identifying the coefficients of Z as C/Norm.

Properties

The convolution coefficients have ten properties which can be seen
by solving Eq. (11) and identifying the C's and Norm. Thesc properties,
listed in Table 1, will be discussed in detail and lead to the application of
the sets of C's and Norm's in optical image data processing and surface
fitting.

TABLE 1. PROPERTIES OF THE TWO-DIMENSIONAT,
CONVOLUTION COEFFICIENTS

1. Existence — Number of points on surface must be
greater than surface order,

2. Universal Numbers — Convolution coefficients depend
only on surface order and filter mask size.

3. Antisymmetry — The cross product matrix is sparse.

4, Equal Interval — Convolution coefficients are integral
numbers,

Regression ~ Convolutior cocfficients derived from
regression theory are filters.

(9]

6. Surfacc Fitting — Convolution coefficients represent
surface partial derivatives.

7. Equivalences — Convolution cocfficients for adjacent
surface orders are identical, as are the transposc
of complementary roughing filters of the same order.

8,  Symmetries — Convolution cocfficients have a minimum
unique set of values per filter,

9, Plane Surface — Convolution coefficients for a first .
order surface represent a moving smoothing average,

10, Double Convolution — Convolntion cocefficients for
band-pass filtering and surl. - ¢ normals represent
double convolution,

W S E—e©
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Existence. For each Aij associated with a surface of order m+n, there

exist a set of C's and a value for Norm so long as

E'ET#U . (13)

This nonsingularity requirement indicates that the number of points on the
surface, np, must be greater than the order of the surface, m+n.

Universal Numbers., The values of C and the value of Norm associated
with a surface of ¢rder m+n and np points are indepundent of the values of the

intensities, zk, on the surface. Thus, the convolution ceoefficients ure

universal numbers completely described by two numbers, m+n and np.

Antisymmetry. An antisvmmetric filter mask has an odd number of
rows and columns, not nccessarily equal, which, as previously stated,
unambiguously cstablishes tihe center point as 0,0, Such a mask reduces the
elements in the symmetric cross product matrix to zero where

b{yﬁ'o ’ V14)

when cither p or q is odd. Equation (14} is true since the single sum over all
the data points in the filter mask can be replaced by a double summation,
Eq. (1) or Eq. (15).

np r - c
L Z }_, . (15)
k1 x--r y -¢

where
np = (2r+1) - (2¢c: 1) .

Substitution of this expression in Eq. (11) leads to the sparsencess for anti-
symmetric mask since each sum on the right-hand side of Eq. (16) is 7evo0,



n r C
i,{yz: ST -0 (16)

k=1 =-r y=-¢

when either p or q is odd. Because of the sparseness, the regression
coefficients Aij can be partitioned into matrices of lower order (see Appendix A).

Equal Interval. An equal interval filter mask has the spacing between
data points an integer multiple of a common factor. The common factor betwzen
rows Ar need not equal the common factor between columns Ac,

Ar# Ac (17)

and the integers need not be consecutive but must remain fixed as the mask
moves over an image (otherwise the C's and Norm change). As a consequence,
the terms in the cross product matrix XY are integer values, exclusive of the
common factors Ar and Ac, and accordingly the C's and Norm are integer
values.

Factoring common integers from the C's and Norm leads to a uni ~rsal
set of integers associated with each Aij which can he descriled as two-dimen-

sional convolute integers |2]. Note that the antisymmetry and equal interval
properties are mutually independent.

Regression. As a result of being derived from regression theory, sets
of C's and Norm's satisfy two filtering principles. The Aij terms can be

obtained from the normal cquations (scc Appendix A) by Cramer's Rule. Now
the coefficients of z on the right-hand side of the normal equations are identical
to the first column of the X * YT matrix (sec Appendices A and B), Solving
the normal equations for Aij and factoring the > 2 terms from the i+j column of

the numerator clearly identifies the C's and Norm {(sce Appendix A). Summing
the C's over all the data points in the mask and considering the determinant of
the numerator leads to two filtering properties | 3],

(1) Smoothing: The sot of C's and Norm associated with A(m satisiy

np
L C, /Norm = 1 (18)
k=1
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low-pass filtering.

(2) Roughing: The set of C's and Norm associated with Aij’ where

i,i 4 0, satisfy

np
Z Ck/Norm =0
k=1

band-pass or high-pass filtering.

(19)

Surface Fitting. The two-dimensional convolution filters generate the
various partial derivatives for a surface of order m+n fitted to a data set hy
regression. This can be seen by identifying all the regression coefficients in
Eq. (5), evaluated at the center point of the mask.

The censtant term, AOO’

data point (the zero partial derivative). Thus,

with AOO represent smoothing filters,

is the fitted value of the intensity or a smoothed

the C's and Norm associated

Expanding Eq. (5), assuming an antisymmetric equal interval
(Ar £ Ac) mask, taking partial derivatives evaluated at the central point

(x,y =0), leads to Eqs. (20) through (23).

i+
0
“x 1 Zx

it

ar'od  arad ax'ay
where

r=X°*'Ar + o , row spacing:

c=y-Aac+ [5 , column spacing;

and x and y are antisymmetric integer values.
mask,

(20)

(21)

At the center point in the filter

acha
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. - (i+i)AL (22)
9x 8yJ 1
The fitted partial derivatives of the surface at x,y = 0 are
. B 3
A - Arad o 24
ij - . (23)

(i+3§) or ac)

Thus, the C's and Norm's associated with Aij where i, j £ 0 represent partial
derivative (roughing) filters. Note that Eq. (23) indicates that A00 terms

are independent of the row column spacing (Ar, Ac).

Equivalences. As a result of the antisymmetric properties of the
filter mask, a number of equivalences exist between convolution coefficients
of adjacent surface orders and between the transpose of complementary
roughing filters of the same surface order. The effect of these 2quivalences
is to reduce the number of calculations required to present all the filters
associated with the various surface orders and mask sizes.

Table 2 lists the two types of equivalences in the convolution

coefficients: CE (ij), where { represents surface order and ij the appropriate
partial derivative. The proof of these properties is presented in Appendix B,
which shows the normal equations for a first order and third order surface.

Symmetries. Some general symmetry properties exist for the set of
C's as ciated with each Aii' These properties depend on ij odd or even and

result from the symmetry associated with the normal equations, the anti-
symmetry of the mask, and the equal interval hetween data points. The
symmetry properties are expressed in Tahle 3. An alternate expression for
the convolution coefficients leads to these properties, Appendix B,

Coefficients which lie on a zero row or column have a two-fol.
symmetry. All other coefficients have at least a four-fold symmetry; and
for a symmetric mask, nondiagonal, nonzero, row or column terms possess
eight-fold symmetry.
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TABLE 2. EQUIVALENCES?

be

Regression
Coefficient Surface Order
Alij) £ odd 1 even
L L+ ¢ 4.
i+j odd C = 1 clo ot
£t T
i+j even C =C 1 C = +1
Complementary )
Identical Surface Order
Transpose
s CGi) = i

a. £ represents the order of the surface.

b. ij represents the appropriate partial derivative,

¢. T represents transpose.
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TABLE 3., SYMMETRY PROPERTIES®

b

Mask Symmetry
i = j Symmetric Filter

i # j Nonsymmetric Filter

Coefficient Symmetry

L
C =(-n'"¢
-r-C rc

C =(-1lc
rc¢ re

C =(-n'c
-C Tre

Redundancy
i#]j 1=]
4 fold r,c #0 4 fold
2 fold r,c =0 2 fold
4 fold r+¥c#0 8 fold
Zero Terms
Cro =0 i odd
Coc =0 j odd

a. r,c represent row, column location in the filter mask.

b. 1i,j represent the appropriate partial derivative.
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These properties allow the number of multiplications per filter to be
co.' :iderably reduced. Table 4 indicates the number of multiplications per
filt:r. In general this table gives the maximum number of multiplications.
S.pe.ific filters are capable of having fewer unique numbers; e. g., multipli-
cations. These properties sufficiently affect the time required to filter an
image.

A Plane Surface. A satisfying, though possibly trivial result, is the
ecqu: ‘alence to be found between regression calculation filtering by a plane
suriace and nearest neighbor averaging, which was discussed under the heading
Moving Smoothing Average. Appendix B indicates the reduced form of the
normal equations for a first order surface. For smoothing, the C's are clearly
unity and Norm = np, the number of points considered. Smoothing an image by
applying the two-dimensional convolute integers for a first order surface is
identical to a moving smoothing average.

Double Convolution. The convolute integers generated so far have
satisfied low-pass and high-pass filtering criteria. Combining these filters
v.ill result in band-pass filtering, or double convolution,

p

Let z. reprcsent the filtered value of a point in an image as a result of

conve lving the raw data with a pth order, rth row and cth column filter.

ey r c
o) Sy P

(24
K mn zmn/Norm . 24)

i
Ar AcJ m-=-r n-=-¢ p

This may be a smuothing (i,j = 0) or high-pass filter (i, j #0).

Assuning the data neceds additional filtering and the mask spacing
qp

K represent convolving the already filtered data
\

(Ar, £-) remair.s fixed, let z

with a surface of qth order.

. oy rn C‘

ng (l-f _l.‘- ) L cd 23 /Norm (25)
S 1 Lo o
Ar Ac? m*ir* nftce MM mn
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TABLE 4. MULTIPLICATIONS PER FILTER?

o gy TESRET——nT—,

b

Mask No. of Multiplications
Symmetric,
i=j

even, even (np+1) (np+3)/8

odd, odd (np-1) (np+1)/8
Nonsymmetric,
i#]

even, even

i,j < order [(np-l)(np+1)/4] +1

i,j = order

(j,i =0)
odd, odd
i,j < order

. c

i,j = order
even, odd

i,j < order

i,j = order

(np+1)/2 or (np-1)/2

(np-1)/2

[(np-1)/2]? or (np-1) (np+1)/4

(np-1)/2

(j.i= 0)
a.
of the filter mask.
b.
c.

np represents the number of data peints in a row or column

i, j represents the appropriate partial derivative.

i, j combination not possible.
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k 47 jH°
Ar Ac“+j m“=-r‘ n®=-¢’ m=-r n=-c¢
- cP /Norm_ Norm
mn “m+m’, n+n’ P q (26)

Recognizing that the factorial terms and the powers of Ar and Ac are merely
gain factors (which in no way affect the filtering), the double convolution can be
combined into a single convolution where

- r+r* ct+c”
z = C .z ,/Norm , (27)
o
k a=-é~+r‘) B=-z/+c') B of
where
r’ c’ T c

Caﬁz Z Z Z Z Cm-nc®mn (28)

m‘=-r* n“=-¢* m=-r n=-¢
and where the sums are constrained « = m'+m and 3 = n'4+n, and where

Norm = Norm Norm . (29)
p q

The C o3 's and Norm show that double convolution can be accomplished

by a new single set nf two-dimensional convolute integers using a[2(r+r') + 1]
by [2(c+c') + 1] expanded mask. A considerable savings in time results from
applying the results of Eqs. (28) and (29), Indeed, double convolution
represents the means by which a single filter can be constructed for obtaining
the normal to the surface, at points in an image, or on a two-dimensional
surface,
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CONC LUSION

The theory of two-dimensional convolute integers has heen discussed
emphasizing the filtering aspects of the coefficients for optical image data
processing. The coefficients generate the various partial derivatives
associated with the surface order. Band-pass filtering and surface normals
can be obtained from a single sct of integers with an expanded mask represen-
ting double convolution,

The coefficients have the filtering speed of a moving smoothing average
and retain resolution since they represent two-dimensional regression calcu-
lations., Being derived from regression theory, the coefficients satisfy the
criteria for low-pass and high-pass filtering,

Based upon a few simple concepts — (1) antisymmetry, (2) equal
interval, and (3) mask rows equal columns —, a number of equivalences exist
between surface orders and among filter coefficients, All these properties tend
to reduce Jhe number of unique coefficients per filter; e.g., the number of
multiplications per filter point, or enhance the speed of the filter. The integer
nature of the coefficients also tends to speed the filtering operation, Each
filter is completely described hy two numbers, mask size and surface order.

Detailed calculations have shown the surface order and coefflicient
equivalences hetween first, second, and third order surfaces and indicate
the manner by which two-dimensional convolute integers for any size mask
and any order surface can he obtained,

A companion report is planned which will deal with the software and

hardware aspects of the filters and provide extensive tabulated data on filter
.ocfficients,

16
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TWO-DIMENSIONAL CONVOLUTE INTEGERS
SECOND ORDER SURFACE
5 BY 5 MASK
The normal equations for the quadratic surface are

m, n 00 01 02 10 11 20

np Zy Zy* Zx Zxy ZIx ||lAp]| |Zz
Zy ZIZy2 Iy} Zxy Zxy? ZIxy |lAy Zazy
Iyt Iy Iyt Zxyt Zxy' Zx¥yY|Ag Zzy?
Ix Ixy Zxy? Ixt Ixty IxX® ||Ap]| |Zzx

Ixy Zxy* Zxy® ZIxty ZIxty? IxXy ||Ag| | Zzxy

Ixt ZIxly ZIxty I EIxXly X [|Ag] | Zzx?

uv

00

01

02

10

11

20

For brevity, all summations are sums over all the raw data points k=

1,np; and m + n is constrained to be = 2.

The sparse cocfficient matrix for an antisymmetric mask is

np 0 Zy? 0 0 Zx? (|Apl| | 22
Zyv 0 0 0 0 Ayl | Z2y
Iyt 0 0 Extyr | Ay I zy
Symmetric Ix2 0 0 Ag ) T 2x
Ixty? 0 Ayl | Zzxy
Zxt Ay I zx?

PRECTDING PART DI A NOT FILMED
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This leads to the following reduced matrices.
np Lyt Ixt |Ayl |22

Iyt Iy Ixi|Ap|=]|Zzy?

2 Ixty? Zx! | Ayl | Zax

Zy? LAy = Zazy

Exz .A“) = Tz2x

b)) xzyz N A“ z Xy
The evaluation of matrix terms leads to the following values.

np = (2r + 1) (2¢ + 1) = 25

np np 2 2 2

L= L= L-s ) v
=1 k=1 Xx=-2 y=-2 y=-2

n np 2 2 2
f*;=zy‘:=2 L v =5 ) y =170
k=1 k=1 Xx=-2 y=-2 y=-2

nj 2 2

Zkazykuz Yy = 100

k=1 X=-2 y=-2

Evaluation of the Ay, regression coefficient by Cramer's Rule is
Zz 50 50
Zzy? 170 100

Ag = {Z2x2 100 170

50 170 100

50 100 170

20
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Factoring common terms from rows, expanding the numerator, and
evaluating the denominator results in
4 np

p np np
Agp = | 27 L z-5 Z zy?® + Z zx* + Norm,
k=1 k=1 k=1

T

e

where Norm = 175, Recalling that

np r c
\

=L L

k=1 x=-r y=-c

N e o gz

. and combining coefficients of like terms, lead to the convolute integers

Ag = (' 132_5.9 + 22_9y + T2 g + 22_9 - 13z_p
+ 2249 + 172 g 4 + 222_49 + 172_4y + 22_y
+ T2gg + 222g_q + 272y = 224y + T2y
+22¢.9 + 172y 4 + 222y + 172y + 22g9

~ 132y, + 225, + Ty + 22 - 13z22) 2175 .

Identifying and expressing the Cij coefficients and Norm results in the
following matrix form for two-dimensional convolute integers for smooth-

ing, using a 5 by 5 filter on a second order surface.
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é NORMAIL EQUATIONS
i
H FIRST AND THIRD ORDER SURFACES
The normal equations for a plane surface constrain m +n < 1
) and are
: mn 00 01 10 uv
“' np Zy Zx Ag Zz 00
Sy Zy? Exy || Ay (= | Zzy 01
=x Zxy =x? Ay T zx 10 .
For an antisym1 etric mask, the normal equations lead to the
sepa .ble form
np 0 0 Ago Zz
9 Zy: 0 Ap |= | Zzy
0 0 zx? || Ay Tz |,
where
Ay = Zz/np ,
and
ﬁ Ayp = Zzy/Zy*
2 and

25
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The following normal equations for a cubic surface constrain m + n = 3.

Note that the arrangement of these equations is different from that previously

R S—

considered.
J] 0 2 3 Surface Order
14§ even odd even odd
mn 00 01 10 02 11 20 03 12 21 30 uv
np Ty Zx zy Zxy ZIx =y =xy ZIxy =x Agy Yz 00
Iy = Exy | Z¥ ZIZxy¥ ZTaly| Iy Ixy =xly ZIxly Ay Zzy | 01
Ix Txy x| zZx EIxly X Ix Ixy Ixy ZIx Ay Tax | 10
LY ¥ zTxy Ty zZxy IxyY| Iy zIxy¥ ZIxyY ZIxyY Ay T | 02
Exy Ixy¥ IRy Zxy Iy Ixy| Ixy IXyY IxXY ZIxly Ayl Soaxy | 11
£ Ixty x* ZIxyY Exdy ZIx =y Xy ZIxly I Agy x| 20
Sy Iy £xf ZyY Ixp EIxY Iy EIxy Ixy IxY Ags Ty | 03
Ix? Exy Iy Ixy IxyY DXy Sxy ExXy ExyY Ixly Ay T oaxy?| 12
Xy IxY IxXy Ixy Iy Iy EIXyY IXY IxlyY Xy Ay z 2@y 21
Ex Iy Ix I Zxy I =Y Ix'y iy I Ay Zzd | 30
The antisymmetric property leads to the following sparseness:
np| 0 0| zy 0 =x 0 0 0 0 | [An| =2
0| Zy? 0 0 0 0 | =y 0 =yt 0 Ayl |zzy
0o o0 Izx 0 0 0 0 =Zx}% o0 = Apl [S2x
Zy o 0 =y 0 x| o 0 0 0 Ap| =2y’
0 0 0 0 =Xy 0 0 0 0 0 Al |Zaxy
=x! 0 0 =x% o0 =« 0 0 0 0 Ayl |=2x?
0 =y 0 0 0 0 =z 0 =Xy 0 Apl| |zz¥®
0 0 =x’y? 0 0 0 0 =x}y 0 =x'yY| |Ap Z7xy?
0 Zx% o0 0 0 D S S D S G Ay| [Zaxly
0 o zx 0 0 0 o =xtyY o0 =« Al 1S

[ ——
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The surface order equivalences can now be obtained by considering
the orthogonal nature of various groups of columns, which leads to the
following separable forms:

Y v P e Y R SO S

np z ¢ z x? Ay Tz

zy? Zyt ¥yt ||Ap| = | 22y

Zx? T x2y? Zxd Ay Z zx? ,
' Zy Iy Z x?y? Ay Zzy

Tyt Ty iyt |[Ap] = | 22y

T xty? 2 x2yd Z xiy? A,y Z zxly ,
Zx? Z x2y? x4 Ay Zzx

T xPy? T xy! z xty? Ap| = | Taxy?

Zxd Z xly? Zx5 Agy Zz2x8 ,

Zx%y? . Ay = Zzxy .

Comparing the same partial derivative regression coefficients for
adjacent surface orders indicates the equivalence to be found in thz convolution )
coefficients. The Ay, Ay, and Ay, values are equivalent for second and third ™
order surfaces; the Ay and Ay, terms are equivalent for first and second
order surfaces. Table 2 represents a general expression for the equivalences
to be found in the convolution coefficients of adjacent surface orders.

f An alternate definition of the filter coefficients can be expressed as
:
E [} 2- ¢4 o B
z B .
7 a=0 B=0 Xy aB, ij

27
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where det(Dl) represents the determinant of the cross product matrix of
order £,

Dl= XYTXY ,

and Bi 8. ij represents the cofactor of the element in the off row, ij column
of D7, as expressed for the second order surface in Appendix A,

The complementary transpose of an element of a roughing filter can
be expressed as

o 4 2 T
Cji (x,y) = Cij (y,x) = [Cij (x,y)]

From the preceding definition of the convolution coefficients, the above i3
so when

£ £
Pagii ™ Top, 15

equality between the cofactors of elements in complementary columns.

Since the filter masks are symmetric, y is identical with x. Eithe» ignore

the numerical factors associated with the partial derivatives, Eq. (23),

or assume equal row column mask spacing, Ar= Ac, Now the normal

equations indicate that for such masks, the cofactors of elements in comple-

mentary columns are identical. This leads to the equivalences expressed

in the lower section of Table 2, E 3

Furthermore, for these masks

Pop,ij”

where either @ + i or [ 4 j is odd. The convolution coefficients are thus
concerned with those cofactors where ¢ +1i and 3 +j are even, This requires
the parity of o and i, /5 and j to be the same. Now

28
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j det(D)

¢

Since only parity affects (-1)0, this can be .. placed by (-1)1; aand i
equal parity. This leads to

i
Cij(-x,y) = (-1) Cij(x,y)

? BRI E RE R

Table 3 represents a general expression for the symmetries to be

found in symmetric filter masks.
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